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Abstract
Aim: To investigate the effects of magnesium lithospermate B (MLB) isolated
from Salviae miltiorrhizae on renal microcirculation, and renal and systemic he-
modynamics in Sprague-Dawley rats. Methods: MLB (10, 30, and 60 mg/kg) was
injected intravenously and renal blood flow (RBF), renal cortical microperfusion
(RCM), and systemic hemodynamic function parameters including heart rate (HR),
mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), left ven-
tricular end-diastolic pressure (LVEDP), and maximal velocity of pressure increase
(dp/dtmax) were measured for 45 min after administration.  Results: Intravenous
MLB at doses of 10, 30, and 60 mg/kg increased RCM significantly, but had no
obvious effects on RBF or systemic hemodynamics. The effect of MLB on RCM
reached its peak 15 min after injection and returned to baseline after 45 min.  Up to
60 mg/kg MLB increased RCM by 62.4%±20.2% (changes from baseline, P<0.01),
whereas RBF (3.7%±9.7% vs baseline) and renal vascular resistance (-1.4%±9.1%
vs baseline) did not obviously change. Conclusion: These results indicate that
MLB ameliorates renal microcirculation in a dose-dependent manner, which may
be related to the renoprotective effects of MLB.
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Introduction
Magnesium lithospermate B (MLB) is a tetramer of caf-

feic acid.  It was recently isolated from a plant used in Chi-
nese herbal medicine, Salviae miltiorrhizae, and has been
found to improve renal function and ameliorate experimental
renal failure.  The effect of MLB on renal function was first
reported by Yokozawa et al[1,2], who studied these effects in
several animal models of renal failure and suggested that
MLB increased renal function by improving the renal circu-
latory state through activation of kallikrein, promotion of
prostaglandin E2 production, and scavenging radicals in rats
with renal failure[3–13].  Other researchers have confirmed the
renoprotective property and free radical scavenging effect
of MLB by using different animal models.  Lee et al found
that MLB suppressed the progression of renal injury in
streptozotocin-induced diabetic rats, and inhibited reactive
oxygen species generation that leads to protein kinase C
activation and transforming growth factor (TGF)-1/fibronectin

upregulation in mesangial cells cultured in high glucose con-
ditions[14].  Kang et al demonstrated the strong inhibitive
effect of MLB against the production of superoxide, hydro-
gen peroxide, and hydroxyl radicals, the three most common
oxygen radicals, and suggested that MLB ameliorated renal
defects in rats with ischemia-reperfusion-induced acute re-
nal failure via scavenging of reactive oxygen species[15].  Wu
et al reported that MLB was an inhibitor of lipid peroxidation
and scavenged superoxide anions and hydroxyl radicals both
in vitro and ex vivo[16].  Soung et al demonstrated that MLB
with a hydroxyl group and double bonds exerted an anti-
nitration effect by scavenging peroxynitrite[17].

Although the renoprotective effects of MLB have been
primarily attributed to scavenging oxygen free radicals, other
protective mechanisms may play a role as well.  Taking the
importance of renal microcirculation in maintaining normal
renal function into account, we hypothesized that MLB might
ameliorate renal microcirculation, which is a more direct way
to improve renal function.  The purpose of the present study,
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therefore, was to describe the hemodynamic action of MLB
with respect to the specificity of renal hemodynamics and
microcirculation in rats.

Materials and methods
Drugs  MLB was provided by the Department of

Phytochemistry, Shanghai Institute of  Materia Medica, Chi-
nese Academy of Sciences.  The purity of this compound
was above 99.8%, which was verified by the supplier using
high performance liquid chromatography methods.

Hemodynamics and renal microcirculation  Studies of
hemodynamics and renal circulation were carried out in 8
healthy 9−10-week-old male Sprague-Dawley rats weighing
292±6 g, which were purchased from the Shanghai SLAC
Laboratory Animal Co (Certificate No SCXK 2003-0003,
Shanghai, China).  The rats were anesthetized with urethane
(1.1 g/kg, ip) and placed on a heated operation table to main-
tain body temperature.  The right femoral artery was exposed
and an arterial catheter (PE30) was inserted into it to measure
arterial blood pressure with a pressure transducer (Transpac,
North Chicago, IL, USA).  Left ventricle catheterization was
performed to monitor systemic hemodynamic function pa-
rameters including the heart rate (HR), the left ventricular
systolic pressure (LVSP), the left ventricular end-diastolic
pressure (LVEDP), and the maximal velocity of pressure in-
crease (±dp/dtmax) with another pressure transducer (P23XL,
Statham; Nihon Kohden, Tokyo, Japan) connected to the
Polygraph System RM-6000 (Nihon Kohden) and the
MacLab data acquisition program (MacLab/8S; Analog Digi-
tal Instruments, Castle Hill, NSW, Australia).  The left kidney
was then exposed through a midline incision.  A perivascular
transonic ultrasonic transmit-time flow probe (1RB; Tran-
sonic Systems, Ithaca, NY, USA) was mounted on the left
renal artery for measurement of renal blood flow, with the
signals transmitted to a transmit-time flow meter (T206; Tran-
sonic Systems).  A blunt superficial laser-Doppler probe
(MLD-1; Nankai University, Tianjin, China) was placed on
the kidney surface, and mounted on micromanipulators
(Narishige Scientific Instrument Laboratory, Tokyo, Japan)
so that movement artifacts were avoided.  The probe was
connected to a laser-Doppler flowmeter (LDM; Nankai
University) to measure renal cortical microperfusion.  De-
tails of the validation of the transit time laser-Doppler method
are given elsewhere[18,19].

After surgery, the animals were allowed to recover for 30
min.  Then, animals were injected intravenously with vehicle
control (saline), and MLB at doses of 10, 30, and 60 mg/kg
consecutively, with 45 min between injections.

Mean values for each determination were analyzed over

a 0.5-min to 1-min period.  Renal vascular resistance was
calculated from the mean arterial pressure and the correspond-
ing renal blood flow.

Statistical analysis  Data were given as mean±SD, from 8
animals in each group.  The statistical significance of differ-
ences in the hemodynamic parameters was assessed using
one-way analysis of variance (ANOVA).  Student’s t-test
was used for comparison of the parameters with their baseline
values.  Statistical significance was set at P<0.05.

Results
Effects on renal microcirculation and hemodynamics

There was no difference between groups with respect to the
baseline values of renal hemodynamic and microcirculation
parameters (Figure 1).  Neither vehicle nor MLB administra-
tion had any significant effect on renal blood flow or renal

Figure 1.  Renal hemodynamic effects of magnesium lithospermate
B (MLB) in rats. Rats were injected consecutively with one vehicle
control and three doses of MLB with 45 min between injections. (A)
Renal cortical microperfusion (RCM). (B) Renal blood flow (RBF)
and renal vascular resistance (RVR). n=8. Mean±SD. bP<0.05,
cP<0.01 vs baseline, paired Student’s t-test.  eP<0.05, fP<0.01 vs vehicle
control, one-way ANOVA.
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vascular resistance.  In contrast, MLB administration in-
creased renal cortical microperfusion significantly, whereas
the vehicle had no effect (Figure 1, Tables 1, 2).  This micro-
circulation improving effect reached its peak 15 min after
injection and returned to baseline after 45 min.  Fifteen min-
utes after injection with 10, 30, or 60 mg/kg MLB, renal corti-
cal microperfusion increased by 38.7%±27.3%, 51.4%±22.2%,
and 62.4%±20.2%, respectively (changes relative to baseline;
P<0.01), whereas renal blood flow (2.3%±19.9%, 1.6%±
20.4%, 3.7%±9.7%, respectively) and renal vascular resis-
tance (-8.4%±13.8%, -1.6%±12.4%, -1.4%±9.1%,  respectively)
did not change significantly.

Effects on systemic hemodynamics There was  no differ-
ence between groups with respect to the baseline values of
systemic hemodynamic parameters (Figure 2).  Vehicle ad-
ministration had no effect on these parameters.  Although
MLB administration had some effect on these parameters at
some time points, this effect was neither time-dependent nor
dose-dependent.  Fifteen minutes after injection with MLB
60 mg/kg, when the effect of MLB on renal cortical micro-
perfusion had reached its peak, mean arterial pressure

(1.9%±10.2% vs  baseline), heart rate (0.2%±5.4% vs baseline),
LVSP (0.4%±7.8% vs baseline), LVEDP (7.8%±33.4% vs
baseline) and +dp/dtmax (3.0%±6.8% vs baseline) had not
changed in a statistically significant way, whereas -dp/dtmax

increased slightly (5.7%±6.2%; P<0.05 vs baseline).

Discussion

The kidneys play a central role in the regulation of the
body’s salt and water balance.  A highly regulated microcir-
culatory and interstitial environment is essential for opti-
mum function of the kidneys.  Although the renal function
improving property of MLB has been studied extensively,
there has been no report concerning its effect on renal
microcirculation.  We demonstrated here, to our knowledge
for the first time, that MLB could ameliorate renal microcircu-
lation while causing no other significant changes to hemo-
dynamics.

In our study, the effect of intravenously administered
MLB on renal cortical microperfusion was dose-dependent,
and reverted back to the baseline level 45 min after MLB
administration.  Li et al reported the pharmacokinetic param-
eters of MLB after iv administration in 6 beagle dogs, and
showed that MLB was distributed and eliminated quickly[21].
The mean T1/2β values for MLB at doses of 3 mg/kg, 6 mg/kg,
and 12 mg/kg were 43±9 min, 42±7 min, and 42±10 min,
respectively.  Therefore, the time-response curve of MLB
was correlated with its serum concentration-time profiles.

This effect of MLB on renal circulation is consistent with
previous studies.  However, some differences exist.  Yokozawa
et al reported that MLB increased renal blood flow[20], which
we did not find in our study.  The different animal models
and techniques we used may account for this difference.
Yokozawa et al used rats with renal failure, which had sig-
nificantly lower renal blood flow than normal rats, whereas
we used normal Sprague-Dawley rats with normal renal blood
flow.  The techniques we used to measure renal blood flow
were also different.  Yokozawa et al used a needle-type bipo-
lar electrode electrolytic organ rheometer, whereas we used
a transit-time ultrasonic-Doppler flow meter with a much
higher precision (±5%).

The effect of MLB on renal microcirculation may be at-
tributed to several factors.  The primary contributor may be
its potent antioxidant properties.  Recent studies suggest
that free radicals may play a key role in regulating renal mi-
crovascular tone.  Although studies investigating the roles
of oxygen radicals in the physiological regulation of renal
microcirculation have only recently begun, it is evident that
oxygen radicals have important direct and indirect actions in

Table 1.  Effects of MLB on renal cortical microperfusion (unit:
BPU) in rats. n=8. Mean±SD. bP<0.05, cP<0.01 vs baseline. eP<0.05,
fP<0.01 vs vehicle control.

 Time/min      Control                  Dose of MLB/mg·kg-1

                                  10        30                60

0 19.1±4.3 18.7±1.0 19.7±1.5 20.3±1.8
5 20.2±3.7 21.6±3.3b 26.8±2.1cf 22.2±5.1
1 0 19.8±2.4 21.3±4.5 27.5±2.8cf 27.8±5.3cf

1 5 20.4±3.9 25.8±4.5ce 29.8±4.7cf 32.9±4.9cf

2 0 20.4±4.7 21.9±4.9 29.1±6.3cf 29.6±7.6ce

3 0 18.7±2.5 21.6±2.9be 23.1±5.2e 26.0±4.4cf

4 5 19.4±2.4 19.7±1.5 20.3±1.8 19.6±2.0

Table 2.  Effects of MLB on renal hemodynamics 15 min after MLB
iv administration in rats. n=8. Mean±SD. cP<0.01 vs baseline. eP<0.05,
fP<0.01 vs vehicle control.

                                      Control           Dose of MLB/mg·kg-1

                                                         10   30       60

RBF/mL·min-1·g-1   4.1±0.7   4.3±1.0   4.2±0.5   4.0±0.68
RVR/mmHg·mL-1·min-1·g-1 20.6±2.8 19.3±3.4 19.3±2.5 19.7±1.3
RCM/BPU 20.4±3.9 25.8±4.5ce 29.8±4.7cf 32.9±4.9cf
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both cortical and medullary microcirculation[22–25].  Because
O2

– and NO both contain unpaired electrons in their outer
orbits, they undergo extremely rapid, diffusion-limited radi-
cal-radical reactions, leading to the formation of peroxynitrite
anions (ONOO– ), strong oxidants that could prompt the gen-
eration of hydroxyl radicals (OH–).  In the renal microva-
sculature, free radicals can cause vasoconstriction, mediate
the vasoconstriction of other agonists, and modulate the
action of vasodilators (inactivate nitric oxide and blunt en-
dothelium-dependent vasodilation)[26–28].  These findings
have led to the idea that antioxidants might be used thera-
peutically as part of a nephroprotective strategy[29–31].  Our
current study supports this idea: MLB was proven to be a
potent inhibitor of the production of superoxides, hydrogen
peroxide, and hydroxyl radicals, the three most common oxy-
gen radicals in the renal microvasculature.  Here we propose
that MLB, as a potent antioxidant, scavenges free radicals,
blocks the O2

–_ONOO–_OH– cascade, promotes NO bioavail-

ability and thus ameliorates renal microcirculation.
Some other factors may play a role too.  MLB has been

reported to improve the renal circulatory state through acti-
vation of kallikrein and promotion of prostaglandin E2 pro-
duction[7,9,13].  Tissue kallikrein cleaves the kininogen sub-
strate to release the vasoactive peptide kinin, which binds to
endothelial bradykinin B2 receptors and stimulates the re-
lease of potent vasodilators, including prostacyclin, nitric
oxide, and endothelium-derived hyperpolarizing factor[32,33].
The paracrine agent PGE2 is the predominant cyclooxygenase
metabolite of arachidonic acid in the kidney[34].  PGE2 plays
an important role in tubular reabsorption of salt and water as
well as in the control of renal vascular resistance and the
maintenance of glomerular hemodynamics.  Despite several
reports of PGE2-induced vasoconstriction[35,36], there is con-
vincing evidence that PGE2 acts primarily on the preglo-
merular vasculature to counteract the effects of the vasocons-
tricting hormones and protect the kidney from excessive vaso-

Figure 2.  Systemic hemodynamic effects of MLB in rats. Rats were injected consecutively with one vehicle control and three doses of MLB
with 45 min between injections. (A) Heart rate (HR); (B) Mean arterial pressure (MAP); (C) Left ventricular systolic pressure (LVSP); (D) Left
ventricular end-diastolic pressure (LVEDP); (E) +dp/dtmax; (F) -dp/dtmax. n=8. Mean±SD. bP<0.05, cP<0.01 vs baseline, paired Student’s t-test.
eP<0.05, fP<0.01 vs vehicle control, one-way ANOVA.
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constriction[37–41].  Although the effect of MLB on cyclo-
oxygenase has not been studied, it is reported to be a potent
inhibitor of 5-lipoxygenase, and such inhibition of lipoxy-
gengase causes a shift of arachidonic acid from the lipoxy-
genase to the cyclooxygenase pathway, which is thought to
result in increased formation of cyclooxygenase metabo-
lites[3].  Indeed, Yokozawa et al reported that MLB increased
urinary excretion of prostaglandin E2 (PGE2) and 6-keto-PGF1α,
while thromboxane B2 (TXB2) remained unchanged or de-
creased in rats with renal failure[3].  Activation of kallikrein,
promotion of PGE2 production, and scavenging of radicals
could act simultaneously to increase the bioavailability of
NO and prostacyclin, the major vasodilators in the kidney.
These three effects are suggested to be the major contribu-
tors to increased renal microcirculation after MLB administra-
tion.  Nonetheless, the exact mechanism by which MLB ame-
liorates renal cortical microperfusion is not completely clear,
and should be evaluated further.

In conclusion, the major finding of this study is that in-
travenously administered MLB dose-dependently amelio-
rates renal microcirculation.  This finding suggests that the
renal protective properties of MLB may be mediated in part
by vasodilation of the renal microvasculature.
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